Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Axial flow characteristics of bubbly flow in a vertical large-diameter square duct

Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09

An experimental study on the upward bubbly air-water flows in a vertical large-diameter square duct have been performed by using four-sensor probes. The four-sensor probe were applied in the local measurements at 3 axial positions along the flow direction to obtain interfacial area concentration, 3-D bubble velocity vector and bubble diameter. The obtained void fraction, interfacial area concentration, 3-D bubble velocity vector and bubble diameter provided valuable insight into the flow structure and will serve as a valuable database to develop the mechanistic models for interfacial area transport equation sources and sinks.

Journal Articles

Gas-liquid bubbly flow structure in a vertical large-diameter square duct

Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo

Progress in Nuclear Energy, 89, p.140 - 158, 2016/05

 Times Cited Count:22 Percentile:88.83(Nuclear Science & Technology)

An experimental study was performed on the local structure of upward air-water two-phase flow in a vertical large diameter square duct by using a four-sensor probe. The four-sensor probe method classifying spherical and non-spherical bubbles was applied as a key measurement way to obtain local parameters such as 3-D bubble velocity vector, bubble diameter and interfacial area concentration. Both the local void fraction and interfacial area concentration indicated radial core-peak and wall-peak distributions at low and high liquid flow rates respectively. The 2 components of the bubble velocity vector in the cross-section revealed that there exists a rotating secondary flow in the octant symmetric triangular area and the magnitude of the rotating secondary flow increases with the liquid flow rate. Some of constitutive correlations of drift-flux model and interfacial area concentration are reviewed to study their predictabilities against the present data.

Journal Articles

A Large-scale numerical simulation of bubbly and liquid film flows in narrow fuel channels

Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*; Akimoto, Hajime

Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition (CD-ROM), 8 Pages, 2005/11

no abstracts in English

Journal Articles

Numerical predictions on a large-scale bubbly flow configuration in a minichannel

Takase, Kazuyuki; Yoshida, Hiroyuki; Akimoto, Hajime; Ose, Yasuo*; Aoki, Takayuki*

Nihon Kikai Gakkai 2005-Nendo Nenji Taikai Koen Rombunshu, Vol.7, p.17 - 18, 2005/09

no abstracts in English

Journal Articles

Numerical simulation on large-scale bubbly flow behavior in a narrow duct

Takase, Kazuyuki; Yoshida, Hiroyuki; Tamai, Hidesada; Ose, Yasuo*

Nihon Kikai Gakkai 2004-Nendo Nenji Taikai Koen Rombunshu, Vol.2 (No.04-1), p.251 - 252, 2004/09

no abstracts in English

Journal Articles

Model development for bubble turbulent diffusion and bubble diameter in large vertical pipes

Onuki, Akira; Akimoto, Hajime

Journal of Nuclear Science and Technology, 38(12), p.1074 - 1080, 2001/12

Multi-dimensional analyses have been expected recently with expanding computation resources for gas-liquid two-phase flow analyses of advanced nuclear systems such as passive safety systems and natural-circulation-type reactors. However, the applicability of previous constitutive equations for multi-dimensional analyses has not been fully investigated especially for the effects of flow path scale because the equations have been assessed for small-scale experiments. In this study, we analyzed the scale effects by the multi-dimensional two-fluid model code using data in 38 mm and 200 mm diameter pipes. We clarified a key-parameter to model the scale effects and developed models for the effects on phase distribution. The scale effects can be classified by the relative relationship between bubble diameter db and turbulent length scale lT. Bubble-induced turbulence is increased under that db is smaller than lT and bubble coalescence is predominated rather than breakup under that lT is about three times larger than db and under higher void fraction. Based on these findings, we established new models for bubble turbulent diffusion and bubble diameter. The applicability was promising through assessments against the 38 mm and 200 mm pipes under different flow rates and against a database for developing flow along 480 mm pipe.

Journal Articles

Verification of models for bubble turbulent diffusion and bubble diameter in multi-dimensional two-fluid model

Onuki, Akira; Akimoto, Hajime

Proceedings of the 8th International Symposium on Flow Modeling and Turbulence Measurements (FMTM2001) (CD-ROM), 7 Pages, 2001/12

Multi-dimensional analyses have been expected with expanding computation resources for gas-liquid two-phase flow. We recently developed models for bubble turbulent diffusion and bubble diameter to predict the phase distribution by a multi-dimensional two-fluid model. This study was performed to verify our model. The verification was performed using databases under diameter; 9 mm to 155 mm, pressure; atmospheric to 4.9 MPa, flow rate; superficial gas velocity = 0.01 to 5.5 m/s and superficial liquid one = 0.0 to 4.3 m/s, fluid combination; air-water or steam-water. Through the assessments, our model was found to be applicable to the wide range of flow conditions including the effect of pipe diameter. The shape of phase distribution and the average void fraction are predicted well qualitatively and quantitatively. Since the model is established using the ratio of bubble diameter to eddy size as a key-parameter, the ratio is one of important parameters to develop the constitutive equations in the multi-dimensional two-fluid model.

Journal Articles

Numerical analysis of air-water two-phase flow around a circular cylinder

Onuki, Akira; Akamatsu, Mikio*; Akimoto, Hajime

Nihon Konsoryu Gakkai Dai-5-Kai Oganaizudo Konsoryu Foramu Hobunshu, p.87 - 92, 2001/09

Multi-dimensional analyses have been expected with expanding computation resources for gas-liquid two-phase flow in a complex geometry such as fuel rod bundles. Japan Atomic Energy Research Institute is developing a numerical analytical method for the geometry effect, which is based on three-dimensional two-fluid model. In this study, a general curvilinear coordinate system was introduced to the two-fluid model code ACE-3D and air-water two-phase flow around a circular cylinder was analyzed. The present method predicts an air concentration to vortex regions behind the cylinder and a temporal fluctuation of vortex intensity; these two phenomena have been observed in experiments. It is clarified that the phenomena depend on a relative relationship between the drag force and the inertia of bubbles due to pressure fields.

Journal Articles

Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method

Watanabe, Tadashi; Ebihara, Kenichi

Proceedings of 4th International Conference on Supercomputing in Nuclear Applications (SNA 2000) (CD-ROM), 10 Pages, 2000/09

no abstracts in English

Journal Articles

Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe

Onuki, Akira; Akimoto, Hajime

International Journal of Multiphase Flow, 26(3), p.367 - 386, 2000/03

 Times Cited Count:130 Percentile:95.99(Mechanics)

no abstracts in English

Journal Articles

Experimental study on scale effect of flow path against phase distribution of bubbly flow in a vertical pipe

Onuki, Akira; *; Akimoto, Hajime

Konsoryu Shimpojiumu '98 Koen Rombunshu, p.221 - 222, 1998/00

no abstracts in English

Journal Articles

Prediction of phase distribution under bubbly flow in a large vertical pipe by multidimensional two-fluid model

Onuki, Akira; Akimoto, Hajime

Proc. of 3rd Int. Conf. on Multiphase Flow (ICMF'98), p.1 - 6, 1998/00

no abstracts in English

Journal Articles

Developed flow pattern and phase distribution under gas-liquid two-phase flow in a large vertical pipe and prediction of phase distribution by multidimensional two-fluid model

Onuki, Akira; Kamo, Hideki*; Akimoto, Hajime

Eighth Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-8), 3, p.1670 - 1676, 1997/00

no abstracts in English

Journal Articles

Prediction of developing bubbly flow along a large vertical pipe by multidimensional two-fluid model; Development of multidimensional two-fluid model code and analysis under a low velocity

Onuki, Akira; Kamo, Hideki*;

Proceedings of Japan-US Seminar on Two-Phase Flow Dynamics, 0, p.75 - 82, 1996/00

no abstracts in English

Journal Articles

Application of electromagnetic velocity meter for measuring liquid velocity distribution in air-water two-phase flow along a large vertical pipe

Onuki, Akira;

Proc. of ASME Heat Transfer and Fluids Engineering Divisions (HTD-Vol. 321,FED-Vol. 233), 0, p.473 - 478, 1995/00

no abstracts in English

Journal Articles

Flow pattern and its transition in gas-liquid two-phase flow along a large vertical pipe

Onuki, Akira; ; Sudo, Yukio

Proc. of the 2nd Int. Conf. on Multiphase Flow 95-Kyoto, 0, p.FT1.17 - FT1.23, 1995/00

no abstracts in English

JAEA Reports

Void Fractions and Pressure Drops in Reactor Fuel Assemblies

; ;

JAERI-M 82-014, 62 Pages, 1982/03

JAERI-M-82-014.pdf:2.27MB

no abstracts in English

Journal Articles

Characteristics of countercurrent gas-liquid two-phase flow in vertical tubes

*;

Journal of Nuclear Science and Technology, 19(12), p.985 - 996, 1982/00

 Times Cited Count:43 Percentile:95.52(Nuclear Science & Technology)

no abstracts in English

Oral presentation

Oral presentation

Numerical simulation of bubble behavior in PWR rod bundle by interface tracking method

Yoshida, Hiroyuki; Ono, Ayako; Okano, Masaaki*; Makino, Yasushi*

no journal, , 

no abstracts in English

20 (Records 1-20 displayed on this page)
  • 1